

DPP – 6

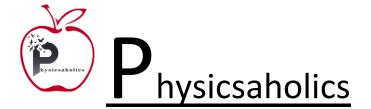
Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/59

Video Solution on YouTube:-

https://youtu.be/f4RlsnuFFUk

Written Solution on Website:-


https://physicsaholics.com/note/notesDetalis/33

- Q 1. A Carnot engine working between 300K and 600K has work output of 800 J per cycle. What is amount of heat energy supplied to the engine from source per cycle (a) 1800 J/cycle
 (b) 1000 J/cycle
 (c) 2000 J/cycle
 (d) 1600 J/cycle
- Q 2. A Carnot engine works between 27 °C and 127 °C. Heat supplied by the source is 500J. Then heat ejected to the sink is? (a) 1000 J (b) 667 J (c) 375 J (d) 500 J
- Q 3. A Carnot engine is working in such a temperature of sink that is efficiency is maximum and never changes with any non-zero temperature of source. The temperature of sink will most likely to be
 (a) 0 K (b) 0 °C
 - (a) 0 K (c) 0 °C
- Q 4. The efficiency of Carnot engine is 50% and temperature of sink is 500K. If temperature of source is kept constant and its efficiency raised to 60%, then the required temperature of the sink will be : -

(d) -273 K

(a) 100 K	(b) 600 K
(c) 400 K	(d) 500 K

- Q 5. A Carnot engine operates between two reservoirs of temperature 900K and 300K. The engine performs 1200 J of work per cycle. The heat energy delivered by the engine to the low temperature reservoir in a cycle is:
 (a) 600 J
 (b) 900 J
 - (a) 600 J (c) 2400 J (d) 800 J
- Q 6. If the door of a refrigerator is kept open, then which of the following is true (a) Room is cooled
 - (b) Room is heated
 - (c) Room is reduced (c) Room is either cooled or heated
 - (d) Room is neither cooled nor heated
- Q 7. In a cyclic process, work done by the system is (a) Zero

- (b) Equal to heat given to the system
- (c) More than the heat given to system
- (d) Independent of heat given to the system
- Q 8. An ideal refrigerator has a freezer at a temperature of -13 °C. The coefficient of performance of the engine is 5. The temperature of the air (to which heat is rejected) will be

(a) 325 °C	(b) 325 K
(c) 39 °C	(d) 320 °C

Q 9. An ideal heat engine working between source and sink temperature T_1 and T_2 respectively, has an efficiency η , the new efficiency if both the source and sink temperature are doubled, will be

(a) ·	<u>1</u> 2	(b) η

- (c) 2η (d) 3η
- Q 10. A refrigerator works between 0 °C and 27 °C. Heat is to be removed from refrigerated space at the rate of 50 kcal/min, the power of the motor of the refrigerator is:
 (a) 0.346 KW
 (b) 3.46 KW
 (c) 34.6 KW
 (d) 346 KW
- Q 11. A Carnot engine takes in 1000K cal of heat from a reservoir at 627 °C and exhausts heat to sink at 27 °C. What is useful work done/cycle by the engine (a) 666.67 J (b) 666.67 KJ

(d) 2.8 KJ

(a) 666.67 J (c) 2.8×10^6

Answer Key

Q.1 d	Q.2 c	Q.3 a	Q.4 c	Q.5 a
Q.6 b	Q.7 b	Q.8 c	Q.9 b	Q.10 a
Q.11 c				